An Asymptotic Formula in Best Approximation*

Noli N. Reyes
Mathematics Department, The Ohio State University, Columbus, Ohio 43210

Communicated by Edward B. Saff
Received June 12, 1992; accepted in revised form August 2, 1994

We generalize some results of Saff and Varga on weighted approximation of a fixed monomial by a given finite-dimensional space of incomplete polynomials. - 1995 Academic Press. Inc

1. Introduction

The results presented in this paper were motivated by the work of Saff and Varga on incomplete polynomials. In [7], they obtained an asymptotic formula for the error in approximating a fixed monomial x^{μ} by a fixed l-dimensional space of incomplete polynomials of the form $\sum_{i=1}^{l} A_{i} x^{\mu_{k}}$ with respect to a weight $w_{k}(x)=x^{k}$, with $k \rightarrow \infty$. Here, $\mu_{1}, \ldots, \mu_{t}, \mu$ are fixed positive integers such that $\mu_{1}<\cdots<\mu_{t}<\mu$. In more precise terms, they proved for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{l+1 / p} \inf _{A_{i}} \mid x^{k}\left(x^{\mu}-\sum_{i=1}^{l} A_{i} x^{\mu_{k}}\right) \|_{L^{p}[0,1]}=\frac{e_{p}}{l!} \prod_{j=1}^{l}\left(\mu-\mu_{j}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{p}:=\inf _{P \in \pi_{i-1}}\left\|e^{-t}\left(t^{\prime}-P(t)\right)\right\|_{L^{p}\left[0, x_{-}\right]} \tag{2}
\end{equation*}
$$

and $\pi_{i .1}$ denotes the set of all polynomials of degree at most $l-1$.
To rewrite (1) from a different perspective, let us define for $k=1,2, \ldots$, and for $1 \leqslant p \leqslant \infty$,

$$
z_{i}(k)=\frac{\mu_{i}-\mu}{\mu+k+1 / p} .
$$

[^0]By a change of variable, $e^{-t}=x^{\mu+k+1 / p}$, and by letting $\phi(z, t)=e^{-r(1+z)}$, we may express (1) equivalently as follows:

$$
\lim _{k \rightarrow \infty} \frac{\inf _{A_{i}}\left\|\phi(0, t)-\sum_{i=1}^{l} A_{i} \phi\left(z_{i}(k), t\right)\right\|_{L^{p}[0, \infty)}}{\left|z_{1}(k) \cdots z_{l}(k)\right|}=\frac{e_{p}}{l!} .
$$

Given an arbitrary function ϕ of two variables satisfying reasonable conditions, this naturally raises the problem of determining the asymptotic behavior of the error in approximating the function $\phi(0, \cdot)$ by linear combinations of the l translates $\phi\left(z_{i}, \cdot\right), i=1, \ldots, l$, as $\left(z_{1}, \ldots, z_{l}\right) \rightarrow(0, \ldots, 0)$. To be more precise, if ϕ is defined on a compact rectangle in R^{2} of the form $[-\rho, \rho] \times[a, b]$, what is the asymptotic behavior of

$$
\begin{equation*}
E_{p}(z):=\inf _{A,}\left\|\phi(0, t)-\sum_{i=1}^{1} A_{i} \phi\left(z_{i}, t\right)\right\|_{L^{p}[a, b]} \tag{3}
\end{equation*}
$$

as $z:=\left(z_{1}, \ldots, z_{l}\right) \rightarrow(0, \ldots, 0)$? Not only shall we provide an answer to this. Our main result, as a matter of fact, will describe the asymptotic behavior of the extremal functions at each point $t \in[a, b]$:

Theorem 1. Let ϕ be defined on a compact rectangle in R^{2} of the form $[-\rho, \rho] \times[a, b]$ such that
(i) for some constant $K>0$,

$$
\begin{equation*}
\left|\operatorname{det} \phi\left(z_{i}, t_{j}\right)\right| \geqslant K \prod_{r<s}\left|\left(z_{s}-z_{r}\right)\left(t_{s}-t_{r}\right)\right| \tag{4}
\end{equation*}
$$

whenever $z_{1}, \ldots, z_{l} \in[-\rho, \rho]$ and $t_{1}, \ldots, t_{l} \in[a, b]$, and
(ii) for $i=0, \ldots, l+1$, and $j=0, \ldots, l-1$,

$$
\begin{equation*}
\frac{\partial^{i+j} \phi}{\partial z^{i} \partial t^{j}} \text { is continuous on }[-\rho, \rho] \times[a, b] . \tag{5}
\end{equation*}
$$

For $1 \leqslant p \leqslant \infty$ and for any l-tuple $z=\left(z_{1}, \ldots, z_{i}\right)$ with distinct nonzero entries $z_{i} \in[-\rho, \rho]$, define

$$
P_{p, z}(t):=\phi(0, t)-\sum_{k=1}^{l} A_{k, p}(z) \phi\left(z_{k}, t\right)
$$

and

$$
P_{p}^{*}(t):=\frac{\partial^{(t)} \phi}{\partial z^{(l)}}(0, t)-\sum_{k=0}^{\prime-1} B_{k, p}^{*} \frac{\partial^{(k)} \phi}{\partial z^{(k)}}(0, t)
$$

to be the unique such linear combinations that satisfy

$$
\left\|P_{p, z}\right\|_{L^{p}[a, b]}=E_{p}(z) \quad \text { and } \quad\left\|P_{p}^{*}\right\|_{L p[a, b]}=E_{p}^{*}
$$

respectively, where $E_{p}(z)$ is given in (3) and we define

$$
\begin{equation*}
E_{p}^{*}:=\inf _{B_{0} \ldots, B_{l-1}}\left\|\frac{\partial^{(t)} \phi}{\partial z^{(i)}}(0, t)-\sum_{i=0}^{l-1} B_{i} \frac{\partial^{(i)} \phi}{\partial z^{(i)}}(0, t)\right\|_{L P[u, b]} . \tag{6}
\end{equation*}
$$

Then for $1<p \leqslant \infty$,

$$
\begin{equation*}
\lim _{=\rightarrow(0, \ldots, 0)} \frac{P_{p, z}(t)}{z_{1} \cdots z_{l}}=\frac{(-1)^{\prime}}{l!} P_{p}^{*}(t), \quad \text { uniformly for } t \in[a, b] . \tag{7}
\end{equation*}
$$

If $p=1$, (7) also holds if in addition, we assume that any linear combination $\phi(0, t)-\sum_{i=1}^{\prime} A_{i} \phi\left(z_{i}, t\right)$ is nonzero for almost all $t \in[a, b]$.

Corollary 1. With ϕ given as in Theorem 1,

$$
\begin{equation*}
\lim _{z \rightarrow(0, \ldots 0)} \frac{E_{p}(z)}{\left|z_{1} \cdots z_{l}\right|}=\frac{E_{p}^{*}}{l!}, \quad 1<p \leqslant \infty, \tag{8}
\end{equation*}
$$

where the limit is taken with the z_{i} 's remaining distinct and non-zero. For $p=1$, (8) also holds if, in addition, we assume that any linear combination $\phi(0, t)-\sum_{i=1}^{\prime} A_{i} \phi\left(z_{i}, t\right)$ is nonzero for almost all $t \in[a, b]$.

Conditions (4) and (5) imply that the following two sets of l functions

$$
\begin{align*}
& \phi\left(z_{k}, \cdot\right), \quad k=1, \ldots, l \text { (with distinct } z_{k} \text { 's) } \tag{9}\\
& \frac{\partial^{(k-1)} \phi}{\partial z^{(k-1)}}(0, \cdot), \quad k=1, \ldots, l \tag{10}
\end{align*}
$$

are Chebyshev systems on $[a, b]$. This is trivial for (9). To prove the assertion for (10), we rewrite the inequality (4) by performing a series of elementary row transformations, obtaining:

$$
\left|\begin{array}{c}
{[\phi]_{0}\left(t_{1}\right) \cdots[\phi]_{t-1}\left(t_{1}\right)} \\
\cdots \\
{[\phi]_{0}\left(t_{1}\right) \cdots[\phi]_{t-1}\left(t_{t}\right)}
\end{array}\right| \geqslant K \prod_{r<s}\left|t_{s}-t_{r}\right|,
$$

where $[\phi]_{k}(t)$ denotes the k th divided difference of $\phi(z, t)$ for $z=$ z_{1}, \ldots, z_{k+1}. The assertion for (10) then follows by letting z_{1}, \ldots, z_{l} tend to zero. Consequently, for $1 \leqslant p \leqslant \infty$, the best L^{p}-approximation of any continuous function on $[a, b]$ by linear combinations of (9) or (10) is
unique. This is a classical result for $1<p \leqslant \infty$. For $p=1$, one may refer to [8, p. 38].
The main tool in the proof of Theorem 1 is a mean value theorem, of interest by itself, presented in the next section.
Finally, using our results and some finite-infinite range inequalities, we are able to generalize Saff and Varga's asymptotic formula (1) in the following form:

Theorem 2. For each positive integer k, let $\mu(k), \mu_{1}(k), \ldots, \mu_{i}(k)$ be $l+1$ distinct real numbers tending to infinity as $k \rightarrow \infty$ such that

$$
\lim _{k \rightarrow \infty} \frac{\mu_{i}(k)}{\mu(k)}=1, \quad i=1, \ldots, l .
$$

Then for $1 \leqslant p \leqslant \infty$, and with e_{p} defined in (2),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\mu(k)^{1 / p+1} \inf _{A},\left\|x^{\mu(k)}-\sum_{i=1}^{\prime} A_{i} x^{\mu_{i}(k)}\right\|_{L^{p}[0,1]}}{\prod_{i=1}^{\prime}\left|\mu_{i}(k)-\mu(k)\right|}=\frac{e_{p}}{l!} . \tag{11}
\end{equation*}
$$

The proofs are given in Sections 3, 4, and 5.

2. A Mean Value Theorem and Some Examples

In this section, ϕ will be defined on $[-\rho, \rho] \times I$, where ρ is a given positive real number and I is an interval of the real line, possibly unbounded. Moreover, it will always be assumed that the partial derivatives

$$
\frac{\partial^{i+j} \phi}{\partial z^{i} \partial t^{j}}
$$

are bounded on $[-\rho, \rho] \times I$ for $i=0, \ldots, l+1$, and $j=0, \ldots, l-1$.
Theorem 3. Let J be a sub-interval of I (possibly the whole of I), for which there is a constant K satisfying

$$
\begin{equation*}
\left|\operatorname{det} \phi\left(z_{i}, t_{j}\right)\right| \geqslant K \prod_{r<s}\left|\left(z_{s}-z_{r}\right)\left(t_{s}-t_{r}\right)\right|, \tag{12}
\end{equation*}
$$

whenever $z_{1}, \ldots, z_{t} \in[-\rho, \rho]$ and $t_{1}, \ldots, t_{1} \in J$. Then there exist positive constants M (depending only on ϕ, I, ρ, and l) and δ (depending only on ϕ, I, J, ρ, and l) such that whenever
(1) $\max \left\{\left|z_{1}\right|, \ldots,\left|z_{i}\right|\right\}<\delta$ and
(2) $P(t):=\phi(0, t)-\sum_{i=1}^{l} A_{i} \phi\left(z_{i}, t\right)$ has 1 distinct zeros on J, then for $t \in I$

$$
\begin{equation*}
P(t)=\frac{(-1)^{\prime}}{l!} z_{1} \cdots z_{l}\left(\frac{\partial^{(t)} \phi}{\partial z^{(l)}}(0, t)-\sum_{k=0}^{l-1} B_{k} \frac{\partial^{(k)} \phi}{\partial z^{(k)}}(0, t)+R(t)\right), \tag{13}
\end{equation*}
$$

where $\left|B_{k}\right| \leqslant M K^{-1}, k=0,1, \ldots, I-1$, and $|R(t)| \leqslant M K^{-2} \max \left|z_{k}\right|$, for all $t \in[a, b]$.

We note that if J is a bounded interval, condition (12) is satisfied by the function $\phi(z, t)=e^{-t(1+z)}$. See [4, p. 15]. In fact, the so-called extended sign-regular functions ϕ on $[-\rho, \rho] \times J$ treated extensively in [4] would also satisfy condition (12). These are functions ϕ such that all its partial derivatives of order $2 l+2$ are continuous and for which there is a sequence $\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{l+1}$ (where $\varepsilon_{r}=+1$ or -1), satisfying

$$
\varepsilon_{r}\left|\begin{array}{ccc}
\phi(z, t) & \cdots & \frac{\hat{\partial}^{r} \phi}{\partial z^{r}}(z, t) \tag{14}\\
& \cdots & \\
\frac{\partial^{r} \phi}{\partial t^{r}}(z, t) & \cdots & \frac{\partial^{2 r} \phi}{\partial z^{r} \partial t^{r}}(z, t)
\end{array}\right|>0,
$$

for any $(z, t) \in[-\rho, \rho] \times J$, and for $r=0,1, \ldots, l+1$.
Karlin, in [4], gives various examples of functions ϕ extended signregular on a rectangle $X \times Y$ in R^{2}. For example, it is shown that given a power series $f(x)=\sum_{n=0}^{x} a_{n} x^{n}\left(a_{n}>0\right)$, with a positive radius of convergence r, the function ϕ defined by $\phi(z, t):=f(t(1+z))$ is extended sign-regular on any rectangle lying on the region $\left\{(z, t) \in R^{2}: z \geqslant-1\right.$, $t \geqslant 0, t(1+z) \leqslant r\}$. See [4, p. 101].

3. Proof of Theorem 3

Given l points z_{1}, \ldots, z_{l} on $[-\rho, \rho]$ and l numbers t_{1}, \ldots, t_{l} on J, we shall adopt the following notation:
(i) $[\phi]_{k}(t)$ for the k th divided difference of $\phi(z, t)$ for $z=$ $z_{0}, z_{1}, \ldots, z_{k}, k=0, \ldots, l$ where $z_{0}=0$.
(ii) $[\phi]_{k, m-1}$ for the $m-1$ st divided difference of $[\phi]_{k}(t)$ for $t=t_{1}, \ldots, t_{m}, m=1, \ldots, l$.
(iii) C_{0} for the quantity

$$
\sup _{i, j} \frac{1}{i!j!}\left\|\frac{\partial^{i+j} \phi}{\partial z^{i} \partial t^{j}}\right\|
$$

the supremum being taken over $0 \leqslant i \leqslant l+1,0 \leqslant j \leqslant l-1$, and $\|\cdot\|$ denotes the supremum norm over $[-\rho, \rho] \times I$.

For convenience, we introduce here once and for all, notation for the determinants that will appear in the proof:

$$
\begin{aligned}
& D:=\left|\begin{array}{ccc}
{[\phi]_{0,0}} & \cdots & {[\phi]_{\ell-1,0}} \\
\cdots & \\
{[\phi]_{0, l-1}} & \cdots & {[\phi]_{l-1, l-1}}
\end{array}\right|, \quad D(t):=\left|\begin{array}{ccc}
\phi(0, t) & \cdots & \frac{1}{l!} \frac{\partial^{\prime} \phi}{\partial z}(0, t) \\
{[\phi]_{0,0}} & \cdots & {[\phi]_{l, 0}} \\
\cdots & \\
{[\phi]_{0, l-1}} & \cdots & {[\phi]_{l, l-1}}
\end{array}\right|, \\
& \Delta=\left|\begin{array}{ccc}
(-1)^{t} z_{1} \cdots z_{l} & \cdots & -z_{l} \\
{[\phi]_{0}\left(t_{1}\right)} & \cdots & 1 \\
& \cdots & {[\phi]_{t-1}\left(t_{1}\right)} \\
{[\phi]_{0}\left(t_{l}\right)} & \cdots[\phi]_{t-1}\left(t_{1}\right) & {[\phi]_{t}\left(t_{t}\right)}
\end{array}\right|, \\
& \Delta_{1}:=\left|\begin{array}{cccc}
(-1)^{\prime} z_{1} \cdots z_{l} & \cdots & -z_{l} & 1 \\
{[\phi]_{0,0}} & \cdots & {[\phi]_{l-1,0}} & {[\phi]_{l, 0}} \\
& \cdots & \\
{[\phi]_{0, t-1}} & \cdots & {[\phi]_{l-1, t-1}} & {[\phi]_{l, t-1}}
\end{array}\right|, \\
& \Delta(t)=\left|\begin{array}{ccc}
{[\phi]_{0}(t)} & \cdots & {[\phi]_{l}(t)} \\
{[\phi]_{0}\left(t_{1}\right)} & \cdots & {[\phi]_{l}\left(t_{1}\right)} \\
\cdots \\
{[\phi]_{0}\left(t_{l}\right)} & \cdots & {[\phi]_{l}\left(t_{l}\right)}
\end{array}\right|, \quad \Delta_{1}(t):=\left|\begin{array}{ccc}
{[\phi]_{0}(t)} & \cdots & {[\phi]_{l}(t)} \\
{[\phi]_{0.0}} & \cdots & {[\phi]_{l, 0}} \\
\cdots \\
{[\phi]_{0, l}} & \cdots & {[\phi]_{l, t-1}}
\end{array}\right| .
\end{aligned}
$$

First of all, we claim that for some $\delta>0$ (independent of the t_{i} 's and of the z_{j} 's)

$$
\begin{equation*}
\left|A_{1}\right| \geqslant \frac{K}{2} \tag{15}
\end{equation*}
$$

for any choice of z_{i} 's in $[-\delta, \delta]$ and t_{j} 's in J. Indeed, by expanding this determinant with respect to the first row, we obtain

$$
\begin{equation*}
\left|D-(-1)^{\prime} \Delta_{1}\right| \leqslant l!C_{0}^{l} \sum_{k=1}^{l}\left|z_{k} \cdots z_{l}\right| \leqslant l!C_{0}^{l} \frac{1-\rho^{\prime}}{1-\rho} \max _{j}\left|z_{j}\right| \tag{16}
\end{equation*}
$$

whenever $z_{1}, \ldots, z_{l} \in[-\rho, \rho]$. Meanwhile, observe that condition (12) implies

$$
\begin{equation*}
|D| \geqslant K \tag{17}
\end{equation*}
$$

for any choice of z_{i} 's in $[-\rho, \rho]$ and t_{j} 's in J. (This follows immediately by a series of row and column transformations.) Therefore if δ is chosen to be any positive number less than or equal to

$$
\frac{K C_{0}^{-\cdot}(1-\rho)}{2 l!\left(1-\rho^{i}\right)}
$$

(17) combined with (16) implies (15) provided that $\max _{j}\left|z_{j}\right|<\delta$.

Now, fix l distinct nonzero numbers z_{1}, \ldots, z_{l} on $(-\delta, \delta)$ and assume that $P(t):=\phi(0, t)-\sum_{i=1}^{l} A_{i} \phi\left(z_{i}, t\right)$ has l distinct zeros $t_{1}<\cdots<t_{l}$ on J. After some manipulations, one arrives at rewriting $P(t)$ as a linear combination of the divided differences $[\phi]_{k}(t)$:

$$
\begin{equation*}
P(t):=\sum_{k=0}^{l} \alpha_{k}[\phi]_{k}(t) \tag{18}
\end{equation*}
$$

Collecting coefficients of $\phi(0, t)$, we obtain

$$
\begin{equation*}
\alpha_{0}+\sum_{k=1}^{1} \frac{\alpha_{k}(-1)^{k}}{z_{1} \cdots z_{k}}=1 . \tag{19}
\end{equation*}
$$

Since $P(t)$ vanishes at t_{1}, \ldots, t_{1}, we also have

$$
\begin{equation*}
\sum_{k=0}^{l} \alpha_{k}[\phi]_{k}\left(t_{j}\right)=0, \quad j=1, \ldots, l \tag{20}
\end{equation*}
$$

We remark that the determinant of the system (19)-(20) of $l+1$ equations is nonzero. Indeed, we may write that determinant as

$$
\begin{equation*}
\frac{(-1)^{l} \Delta}{z_{1} \cdots z_{l}} \tag{21}
\end{equation*}
$$

By a series of row transformations, one obtains $A=A_{i} \prod_{i<j}\left(t_{j}-t_{i}\right)$. The inequality in (15) then shows that the determinant of the system (19)-(20), which is given by (21), never vanishes provided the z_{i} 's are nonzero, as we have assumed them to be.

Now, solving the system (19)-(20) by Kramer's Rule and substituting in (18), we obtain $P(t)=(-1)^{\prime} z_{1} \cdots z_{l} \Delta(t) \Delta^{-1}$. By virtue of the identity $\Delta(t):=\Delta_{1}(t) \prod_{i<j}\left(t_{j}-t_{i}\right)$ (which can be obtained by a series of row transformations), we may write $P(t)=(-1)^{\prime} z_{1} \cdots z_{l} \Delta_{1}(t) \Delta_{1}^{-1}$.

In the meantime, observe that the quotient $D(t) / D$, takes the form

$$
\begin{equation*}
\frac{D(t)}{D}:=\frac{(-1)^{t}}{l!}\left(\frac{\partial^{(l)} \phi}{\partial z^{(l)}}(0, t)-\sum_{k=0}^{i-1} B_{k} \frac{\partial^{(k)} \phi}{\partial z^{(k)}}(0, t)\right) \tag{22}
\end{equation*}
$$

and we may write

$$
P(t)=(-1)^{l} z_{1} \cdots z_{l}\left((-1)^{\prime} \frac{D(t)}{D}+R^{*}(t)\right)
$$

where

$$
R^{*}(t):=\frac{\Delta_{1}(t)}{\Delta_{1}}-\frac{(-1)^{t} D(t)}{D}
$$

So now, it remains for us to obtain estimates for the coefficients B_{k}, and the remainder $R^{*}(t)$. In view of (17) and (22), we easily obtain the following estimates for the coefficients $B_{k}, k=0, \ldots, l-1$

$$
\begin{equation*}
\left|B_{k}\right| \leqslant \frac{M_{k}}{K} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k}:=\frac{(l!)^{2} C_{0}^{l}}{k!}, \quad k=0, \ldots, l-1 \tag{24}
\end{equation*}
$$

To see this, observe that

$$
\frac{\partial^{(k)} \phi}{\partial z^{(k)}}(0, t)
$$

appears in $D(t)$, having as coefficient $(k!)^{-1}(-1)^{k}$ multiplied by an $l \times l$ determinant whose entries are the divided differences $[\phi]_{i, j}(0 \leqslant i \leqslant l, i \neq k$, $0 \leqslant j \leqslant l-1$), each of which is majorized by C_{0}.

To estimate the remainder $R^{*}(t)$, we note that (17) and (15) imply

$$
\begin{equation*}
\left|\Lambda_{1} \cdot D\right| \geqslant \frac{K^{2}}{2} . \tag{25}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
|D| \leqslant l!C_{0}^{\prime} \quad \text { and } \quad|D(t)| \leqslant(l+1)!C_{0}^{l+1}, \quad t \in I \tag{26}
\end{equation*}
$$

Furthermore, for each $j=0, \ldots, l$, we obtain numbers ζ_{j}, ζ_{j}^{*}, satisfying $\left|\zeta_{j}\right|,\left|\zeta_{j}^{*}\right|<\max \left\{\left|z_{1}\right|, \ldots,\left|z_{l}\right|\right\}$ such that

$$
[\phi]_{j}(t)-\frac{1}{j!} \frac{\partial^{j} \phi}{\partial z^{j}}(0, t)=\frac{\zeta_{j}^{*}}{j!} \frac{\partial^{j+1} \phi}{\partial z^{j+1}}\left(\zeta_{i}, t\right)
$$

This implies that for $t \in I$ and for $j=0, \ldots, l$

$$
\left|[\phi]_{j}(t)-\frac{1}{j!} \frac{\partial^{j} \phi}{\partial z^{j}}(0, t)\right| \leqslant(j+1) C_{0} \cdot \max _{k}\left|z_{k}\right|,
$$

which brings us to the following estimate, valid for all $t \in[a, b]$:

$$
\begin{equation*}
\left|\Delta_{1}(t)-D(t)\right| \leqslant(l+2)!C_{0}^{t+1} \max _{k}\left|z_{k}\right| \tag{27}
\end{equation*}
$$

Finally, combining (16), (25), (26), and (27) we obtain

$$
\left|R^{*}(t)\right| \leqslant \frac{M_{l}}{l!K^{2}} \max _{k}\left|z_{k}\right|, \quad t \in I
$$

where

$$
M_{l}:=2((l+1)!)^{3} C_{0}^{2 l+1}\left(l+2+\frac{1-\rho^{l}}{1-\rho}\right)
$$

Therefore, by taking $R(t):=1!R^{*}(t)$, and $M:=\max \left\{M_{0}, M_{1}, \ldots, M_{i}\right\}$, where $M_{0}, M_{1}, \ldots, M_{1-1}$ have been defined in (24), we complete the proof of Theorem 3.
Q.E.D.

4. Proof of Theorem 1

For each $p, 1 \leqslant p \leqslant \infty$, and for each l-tuple $z=\left(z_{1}, \ldots, z_{l}\right)$ with distinct nonzero entries z_{j} in $[-\rho, \rho], P_{p, z}$ will have l distinct zeros on $[a, b]$. See for example [9, p. 98]. This allows us to apply Theorem 3 with $I=J=$ $[a, b]$. So there exists $\delta>0$ such that whenever $\max _{k}\left|z_{k}\right|<\delta$,

$$
\begin{align*}
P_{p, z}(t)= & \frac{(-1)^{t}}{l!} z_{1} \cdots z_{1}\left(\frac{\partial^{(t)} \phi}{\partial z^{(1)}}(0, t)-\sum_{k=0}^{t-1} B_{k, p}(z)\right. \\
& \left.\times \frac{\partial^{(k)} \phi}{\partial z^{(k)}}(0, t)+R_{p}(z, t)\right) \tag{28}
\end{align*}
$$

for $t \in[a, b]$ where

$$
\begin{equation*}
\left|B_{k, p}(z)\right| \leqslant C, \quad k=0, \ldots, l-1, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{p}(z, t)\right| \leqslant C \cdot \max _{k}\left|z_{k}\right|, \quad t \in[a, b], \tag{30}
\end{equation*}
$$

for some constant C depending only on ϕ, a, b, ρ, p, and l.
Thus, to prove the theorem, it will be sufficient to show that

$$
\lim _{z \rightarrow(0, \ldots 0)} B_{k, p}(z)=B_{k, p}^{*}, \quad \text { for } \quad k=0, \ldots, I-1 .
$$

Assuming the contrary, there exists $\varepsilon>0$, such that

$$
\begin{equation*}
\left|B_{k, p}\left(z^{(j)}\right)-B_{k, p}^{*}\right| \geqslant \varepsilon, \quad j=1,2,3, \ldots, \tag{31}
\end{equation*}
$$

for some $k, 0 \leqslant k \leqslant l-1$, and for some sequence of l-tuples $\left\{z^{(j)}\right\}_{j=1}^{\infty}$ tending to $(0, \ldots, 0)$.
(29) implies the existence of a subsequence of $\left\{z^{(j)}\right\}_{j=1}^{\infty}$, which we shall denote again by $\left\{z^{(j)}\right\}_{j=1}^{\infty}$, for which

$$
\widetilde{B}_{k, p}:=\lim _{j \rightarrow \infty} B_{k, p}\left(z^{(j)}\right) \text { exists }
$$

for $k=0, \ldots, l-1$. By defining

$$
\widetilde{P}_{p}(t):=\frac{\partial^{(t)} \phi}{\partial z^{(1)}}(0, t)-\sum_{k=0}^{l-1} \widetilde{B}_{k, p} \frac{\partial^{(k)} \phi}{\partial z^{(k)}}(0, t),
$$

we obtain from (28):

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{P_{p, z}(t)(t)}{z_{1}^{(3)} \cdots z_{l}^{(i)}}=\frac{(-1)^{\prime}}{l!} \tilde{P}_{p}(t), \quad \text { uniformly for } \quad t \in[a, b] . \tag{32}
\end{equation*}
$$

We claim that for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
\widetilde{P}_{p}(t)=P_{p}^{*}(t), \quad t \in[a, b] . \tag{33}
\end{equation*}
$$

(This would contradict (31), thus completing the proof of Theorem 1.)
Proof of (33) for $p=\infty$. If $\tilde{P}_{\infty} \equiv 0$ on [a,b], then (33) immediately follows by uniqueness of the best L^{∞}-approximation by Chebyshev systems. So we may assume that $\left\|\tilde{P}_{\infty}\right\|_{L^{x}[a, b]}>0$. Being the uniform limit of a sequence of functions each with $l+1$ equioscillation points on [a, b], $\widetilde{P}_{\infty}(t)$ itself must also have $l+1$ equioscillation points on $[a, b]$. See
[8, p. 56]. Thus, $\left\|\widetilde{P}_{\infty}\right\|_{L^{x}[a, b]}=E_{\infty}^{*}$, and from this, (33) follows for $p=\infty$, by uniqueness of the best L^{∞}-approximation by Chebyshev systems.

Proof of (33) for $1 \leqslant p<\infty$. The characterization of the best L^{p}-approximation [8, p. 64], implies

$$
\int_{a}^{b} \phi\left(z_{k}, t\right)\left|P_{p, z}(t)\right|^{p-1} \operatorname{sgn} P_{p, z}(t) d t=0, \quad k=1, \ldots, l .
$$

(Recall that for $p=1$, our assumptions imply that $P_{p, z}(t) \neq 0$ for almost all $t \in[a, b]$.) For $k=0, \ldots, l-1$, let $(\phi)_{k}(t)$ denote the k th divided difference of $\phi(z, t)$ for $z=z_{1}, \ldots, z_{k+1}$. Since z_{1}, \ldots, z_{l} are distinct and nonzero, $(\phi)_{k}(t)$ is a linear combination of $\phi\left(z_{1}, t\right), \ldots, \phi\left(z_{k+1}, t\right)$. Hence

$$
\int_{a}^{b}(\phi)_{k}(t)\left|\frac{P_{p, z}(t)}{z_{1} \cdots z_{l}}\right|^{p-1} \operatorname{sgn} \frac{P_{p, z}(t)}{z_{1} \cdots z_{i}} d t=0, \quad k=0, \ldots, l-1
$$

Now, we let $z=\left(z_{1}, \ldots, z_{l}\right) \rightarrow(0, \ldots, 0)$ through the sequence $\left\{z^{(j)}\right\}_{j=0}^{\infty}$. Applying (32) and the Lebesgue Dominated Convergence Theorem, we obtain

$$
\begin{equation*}
\int_{a}^{b} \frac{\partial^{k} \phi}{\partial \zeta^{k}}(0, t)\left|\widetilde{P}_{p}(t)\right|^{p-1} \operatorname{sgn} \tilde{P}_{p}(t) d t=0, \quad k=0, \ldots, l-1 \tag{34}
\end{equation*}
$$

This shows that $\left\|\widetilde{P}_{p}\right\|_{L^{p}[a, b]}=E_{p}^{*}$, for $1 \leqslant p<\infty$. Uniqueness of the best L^{p}-approximation by Chebyshev systems then implies that (33) also holds for $1 \leqslant p<\infty$.
Q.E.D.

5. Proof of Theorem 2

We shall be applying the following finite-infinite range inequalities. Mentioned here are only very special cases of the results of Mhaskar, Saff, and Varga from [5] and [6].
(1) For each $p>0$, there exist positive constants c_{1}, c_{2}, depending only on p such that for each integer $\lambda \geqslant 1$, and for each polynomial $Q \in \pi_{i}$,

$$
\int_{0}^{\infty}\left|e^{-t} Q(t)\right|^{p} d t \leqslant\left(1+c_{1} \exp \left(-c_{2} \lambda\right)\right)^{p} \int_{0}^{3 \lambda}\left|e^{-t} Q(t)\right|^{p} d t
$$

(2) For any polynomial P of degree at most λ,

$$
\left\|e^{-t} P(t)\right\|_{L^{\times}[0, \infty)}=\left\|e^{-t} P(t)\right\|_{L^{x}[0,2 i]} .
$$

As an immediate consequence of these two results, we have for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
e_{n}=\lim _{i \rightarrow-\infty} e_{p}(\lambda) \tag{35}
\end{equation*}
$$

where e_{p} is given in (2) and $e_{p}(\lambda)$ is defined by

$$
\begin{equation*}
e_{p}(\lambda):=\inf _{P \in \pi_{t-1}}\left\|e^{t}\left(t^{t}-P(t)\right)\right\|_{L^{p}[0,3 \lambda} \tag{36}
\end{equation*}
$$

In what follows, p will be fixed such that $1 \leqslant p \leqslant \infty$. By defining

$$
z_{i}(k)=\frac{\mu_{i}(k)-\mu(k)}{\mu(k)+1 / p}
$$

and employing the change of variable $e^{-t}=x^{\mu(k)+1 / p}$ we may rewrite (11) equivalently as follows

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\hat{E}_{p}(k)}{\left|z_{1}(k) \cdots z_{l}(k)\right|}=\frac{e_{p}}{l!}, \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{E}_{p}(k):=\inf _{A_{1}}\left\|e^{-t}-\sum_{i=1}^{1} A_{i} e^{-t(1+z(k)}\right\|_{L^{p}[0, \infty)} \tag{38}
\end{equation*}
$$

Note that by taking $\phi(z, t)=e^{-(1+z)}$ in Theorem 3, we easily obtain a finite-interval version of (37). Namely, for each $\lambda>0$,

$$
\lim _{k \rightarrow \infty} \frac{\inf _{A_{i}}\left\|e^{-t}-\sum_{i=1}^{t} A_{i} e^{-\eta\left(1+z_{i}(k)\right)}\right\|_{L^{p}[0.3 \lambda]}}{\left|z_{1}(k) \cdots z_{i}(k)\right|}=\frac{e_{p}(\lambda)}{l!}
$$

where $e_{p}(\lambda)$ is defined in (36). Equation (35) then implies that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{\hat{E}_{n}(k)}{\left|z_{1}(k) \cdots z_{l}(k)\right|} \geqslant \frac{e_{p}}{l!} . \tag{39}
\end{equation*}
$$

To prove the inequality

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{\hat{E}_{p}(k)}{\left|z_{1}(k) \cdots z_{l}(k)\right|} \leqslant \frac{e_{p}}{l!}, \tag{40}
\end{equation*}
$$

we proceed with an indirect argument. Assuming the contrary, we can find an increasing sequence $k_{1}<k_{2}<\cdots$ of positive integers, and a positive number ε such that

$$
\begin{equation*}
\frac{\hat{E}_{p}\left(k_{j}\right)}{\left|z_{1}\left(k_{j}\right) \cdots z_{i}\left(k_{j}\right)\right|}>\frac{e_{p}}{l!}+\varepsilon, \quad j=1,2, \ldots \tag{41}
\end{equation*}
$$

Now, define real numbers $A_{i, j}, 1 \leqslant i \leqslant l, j=1,2, \ldots$ such that the functions defined by

$$
Q_{i}(t):=e^{\prime}-\sum_{i=1}^{1} A_{i, j} e^{\left(1+z,\left(k_{i}\right)\right)}, \quad j=1,2,3, \ldots,
$$

vanishes precisely at the zeros of $t^{\prime}-P^{*}(t)$ where $P^{*}(t) \in \pi_{i}$, is the unique polynomial satisfying $\left\|e^{-t}\left(t^{\prime}-P^{*}(t)\right)\right\|_{L^{p}[0 . x)}=e_{p}$.
By taking $\phi(z, t)=e^{\cdots(1+z)}, I=[0, \infty)$, and J to be any fixed compact interval containing the zeros of $t^{\prime}-P^{*}(t)$, Theorem 3 asserts that there are polynomials $P_{i} \in \pi_{t, 1}, j \geqslant 1$, such that for $0 \leqslant t<\infty$

$$
\begin{equation*}
Q_{i}(t)=\frac{(-1)^{\prime}}{1!} z_{1}\left(k_{l}\right) \cdots z_{i}\left(k_{l}\right)\left(e^{-t}\left(t^{\prime}-P_{i}(t)\right)+R_{j}(t)\right) . \tag{42}
\end{equation*}
$$

Moreover, the absolute values of the coefficients of the P_{i} 's are less than some constant M (depending only on p), and as well, for $j=1,2, \ldots$, and $t \in\left[0, x_{i}\right),\left|R_{j}(t)\right| \leqslant M \max \left\{\left|z_{1}\left(k_{j}\right)\right|,\left|z_{2}\left(k_{j}\right)\right|, \ldots,\left|z_{i}\left(k_{i}\right)\right|\right\}$. Since the right hand side of (42) vanishes precisely at the zeros of $t^{\prime}-P^{*}(t)$, we can find an increasing sequence $j_{1}<j_{2}<\cdots$, of positive integers such that the coefficients of $P_{i, n}(t)$ converge respectively to those of $P^{*}(i)$ as $n \rightarrow \infty$. Consequently, for $1 \leqslant p \leqslant \infty$,

$$
\lim _{n \rightarrow+}\left\|e^{-}\left(t^{\prime}-P_{i_{n}}(t)\right)\right\|_{L \cdot P[0 . x)}=\left\|e^{\prime}\left(t^{\prime}-P^{*}(t)\right)\right\|_{\ell \cdot[0 . x)}=e_{p} .
$$

Therefore, taking the L^{p}-norm on $[0, \infty)$ of both sides of (42), and applying the triangle inequality on the right hand side of the resulting equation, lead us to the inequality

$$
\lim \sup \frac{\hat{E}_{p}\left(k_{j}\right)}{\left|z_{1}\left(k_{j}\right) \cdots z_{l}\left(k_{j}\right)\right|} \leqslant \frac{e_{p}}{l!},
$$

where the lim sup is taken as j runs over the sequence $j_{1}<j_{2}<\cdots$. This contradicts (41), thus establishing the validity of (40). This completes the proof of Theorem 2.
Q.E.D.

References

[^1]4. S. Karlin, "Total Positivity," Vol. 1, Stanford Univ. Press, Stanford, CA, 1968.
5. E. B. Saff and R. S. Varga, On incomplete polynomials, II, Pacific J. Math. 92 (1981), 161-172.
6. H. N. Mhaskar and E. B. Saff, Where does the L^{p}-norm of a weighted polynomial live? Trans. Amer. Mah. Soc. 303 (1987), 109-124; Erratum, Trans. Amer. Math. Soc. 308 (1988), 431.
7. E. B. Saff and R. S. Varga, On lacunary incomplete polynomials, Math. Z. 177 (1981), 297-314.
8. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," MacMillan, New York, 1963.
9. G. A. Watson, "Approximation Theory and Numerical Methods," Wiley, New York, 1980.

[^0]: * Part of the author's Ph.D. thesis written under the supervision of Professor B. Baishanski.

[^1]: 1. B. Baishanski, Given two spaces of generalized Dirichlet polynomials, which one is closer to x^{*} ? in "Proc. Internat. Cont. Constr. Function Theory Varna," Bulgar. Acad. Sci. (1984), 145-149.
 2. B. Balshanski and R. Bojanig, An estimate for the coefficients of polynomials of given length, J. Approx. Theory 24 (1986), 181-188.
 3. A. O. Gelfond, "Calcul des Différences Finies," Dunod, Paris, 1963.
