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1. INTRODUCTION

The results presented in this paper were motivated by the work of Saff
and Varga on incomplete polynomials. In [1], they obtained an
asymptotic formula for the error in approximating a fixed monomial x" by
a fixed I-dimensional space of incomplete polynomials of the form
L;~IA,XII' with respect to a weight H'k(X)=Xk, with k->Y.;. Here,
PI' ..., PI' P are fixed positive integers such that PI < ... <p,<p. In more
precise terms, they proved for I ~ P ~ if) ,

where

ep := inf Ile-'(t'-P(t))llu[o, Y.p
Pe Trl-l

(2)

and 7[, 1 denotes the set of all polynomials of degree at most 1- 1.
To rewrite (1) from a different perspective, let us define for k = 1,2, ...,

and for I ~ P~%,

• Part of the author's Ph.D. thesis written under the supervision of Professor B. Baishanski.

253
0021-9045/95 $6.00

040 ~o 2-9

Copyright '( 1995 by Academic Press. Inc,
All rights of reproduction in any form reserved.



254 NOLI N. REYES

By a change of variable, e-l=xll+k+l/p, and by letting ifJ(z, t)=e- l(l+z),
we may express (t) equivalently as follows:

Given an arbitrary function ifJ of two variables satisfying reasonable
conditions, this naturally raises the problem of determining the asymptotic
behavior of the error in approximating the function ifJ(O,·) by linear
combinations of the I translates ifJ(Zj, '), i = I, ... , I, as (z 1, ... , Z ,) -+ (0, ..., 0).
To be more precise, if ifJ is defined on a compact rectangle in R 2 of the form
[ - p, p] x [a, h], what is the asymptotic behavior of

Ep(z) := inf IlifJ(O, t) - ±A/ifJ(z/, t)l!
A, /~1 LP[a.b]

(3)

(4 )

as Z := (Z I' ... , Z,) -+ (0, ... ,O)? Not only shall we provide an answer to this.
Our main result, as a matter of fact, will describe the asymptotic behavior
of the extremal functions at each point t E [a, h]:

THEOREM t. Let ifJ be defined on a compact rectangle in R 2 of the form
[-p, p] x [a, b] such that

(i) for some constant K> 0,

Idet ifJ(z/, ti)1 ~ K n I(z,- z,)(t,- t,)I,
r<s

whenever Z[, ..., z,E [-p, p] and t l , ... , tiE [a, b], and

(ii) for i = 0, ..., I + I, and j = 0, ..., 1- t,

iY+jifJ
-.-",-. is continuous on [-p, pJ x [a, b].azl ldJ

(5)

For t ~ p ~ (jJ and for any I-tuple z = (z l' ... , zd with distinct nonzero entries
Z/E [-p, p], define

,
pp.At) := ifJ(O, t) - L Ak.p(z) ifJ(Zkl t)

k~l

and

ij<lIifJ '-I iJ(k)ifJ
P;(t) := ;1Z(I) (0, t) - L Bt.p;;(kT (0, t),

U k=O uZ
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to be the unique such linear combinations that satisfy

255

and

respectively, where Ep(z) is given in (3) and we define

. 11
8U )rP /- I 8U1rP II

E/:= mf oz(/) (0, t) -2: B; oz(i) (0, t) p •

Bo ..... Bt-l 1=0 I L [a. h]

Then for 1 < P ~ OC,

(6)

uniformly for t E [a, b ]. (7)

If P = 1, (7) also holds if in addition, we assume that any linear combination
q>(O, t) - L; ~ 1 A ;qJ(z j, t) is nonzero for almost all t E [a, b].

COROLLARY 1. With rP given as in Theorem 1,

lim Ep(z) = E/
z~IO..... O) IZ1 .. ·z/1 l!'

I<p~oo, (8)

where the limit is taken with the z;'s remaining distinct and non-zero. For
p = 1, (8) also holds if, in addition, we assume that any linear combination
q>(O, t) - L;~ 1 AjqJ(Zj, t) is nonzero for almost all t E [a, b].

Conditions (4) and (5) imply that the following two sets of I functions

k = 1, ..., I (with distinct Zk'S)

k= I, ..., I,

(9)

(10)

are Chebyshev systems on [a, b]. This is trivial for (9). To prove the
assertion for (10), we rewrite the inequality (4) by performing a series of
elementary row transformations, obtaining:

[q>]O (td··· [rP]/~ 1 (td

~Kn Its-t,l,
'<5

where [q>]k (t) denotes the kth divided difference of qJ(z, t) for z =

z1, ... , Zk + l' The assertion for (10) then follows by letting z l' ... , Z I tend to
zero. Consequently, for 1 ~ p ~ 00, the best LP-approximation of any
continuous function on [a, b] by linear combinations of (9) or (10) is
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unique. This is a classical result for 1 < p ~ 00. For p = 1, one may refer to
[8, p.38].

The main tool in the proof of Theorem 1 is a mean value theorem, of
interest by itself, presented in the next section.

Finally, using our results and some finite-infinite range inequalities, we
are able to generalize Saff and Varga's asymptotic formula (1) in the
following form:

THEOREM 2. For each positive integer k, let p(k), pl(k), ... , p,(k) be 1+ I
distinct real numbers tending to infinity as k -> 00 such that

lim p,(k) = 1,
k~x J1.(k)

i = 1, ..., I.

Then for I ~ p ~ 00, and with ep defined in (2),

p(k)'/Pt-'inf Ilx)1(kl_ L' AX!I,Ik111 r
lim A, I ~ 1 I L [0. '] eP (11 )

k~x n~~,lp,(k)-p(k)1 l!

The proofs are given in Sections 3, 4, and 5.

2. A MEAN VALUE THEOREM AND SOME EXAMPLES

In this section, ~ will be defined on [- p, pJ x I, where p is a given
positive real number and I is an interval of the real line, possibly unbounded.
Moreover, it will always be assumed that the partial derivatives

(J'+j~

OZi oti

are bounded on [ - p, pJ x I for i = 0, ... , 1+ 1, and j = 0, ... , 1- I.

THEOREM 3. Let J be a sub-interval of I (possibly the whole of 1), for
which there is a constant K satisfying

(12)
r<s

whenever z" ... ,Z,E[-p,p] and t/, ...,t,EJ. Then there exist positIVe
constants M (depending only on rjJ, I, p, and I) and (j (depending only on rjJ,
I, J, p, and l) such that whenever

(I) max{lzll, ..., Iz,l} <(j and
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(13 )

(2) P(t):= ¢J(O, t) - L;~ 1 Ai¢J(Zj, t) has 1 distinct zeros on J, then for
tEl

( - I )' (CUltP 1- 1 jj(k)tP )
P(t)=-I-!-ZI"'Z{ OzUI (0, t)- k~O B k GZ 1kl (0, t)+R(t) ,

where IBk I~ M K - 1, k = 0, I, ... , 1- 1, and IR(t) I~ M K - 2 max IZk I, for all
tE[a,b].

We note that if J is a bounded interval, condition (12) is satisfied by the
function tP(z, t) = e -l( 1+ ol. See [4, p. 15]. In fact, the so-called extended
sign-regular functions tP on [- p, p] x J treated extensively in [4] would
also satisfy condition (12). These are functions tP such that all its partial
derivatives of order 21 + 2 are continuous and for which there is a sequence
f o, t l' ... , f{+ 1 (where t r = + 1 or - 1), satisfying

tP(Z, t)
artP
az r (z, t)

ar ¢J i]2' tP
- (z, t)· .. -~- (z, t)ott Oz' ot r

>0, (14)

for any (z, t) E [ - p, p] x J, and for r = 0, 1, ... , 1+ 1.
Karlin, in [4], gives various examples of functions ¢J extended sign­

regular on a rectangle X x Yin R 2
• For example, it is shown that given a

power series f(x) =Lf~=O anx" (an> 0), with a positive radius of con­
vergence r, the function ¢J defined by tP(z, t) := f(t(1 + z» is extended
sign-regular on any rectangle lying on the region {(z, t) E R 2

: z?: - I,
t ?: 0, t(1 + z )~ r }. See [4, p. 10 I ].

3. PROOF OF THEOREM 3

Given I points Z J' ... , z, on [ - p, p] and I numbers t I' ... , t{ on J, we shall
adopt the following notation:

(i) [tP]k (t) for the kth divided difference of ¢>(z, t) for z =
Zo, Zl' ... , Zk> k=O, ... , I where zo=O.

(ii) [¢>]k.m-l for the m-1st divided difference of [tP]k(t) for
t=t1, ...,tm , m=l, ... ,1.

(iii) Co for the quantity

1 II Oi+
J

¢> IIsup -.'-'1 ':1~i ':1tJ '
1./ I. J. I ().. (/
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the supremum being taken over 0 ~ i ~ 1+ 1, 0 ~ j ~ 1- 1, and II· II denotes
the supremum norm over [ - p, p Jx I.

For convenience, we introduce here once and for all, notation for the
determinants that will appear in the proof:

D:=

[.p] 0, 0 ... [.p J1- 1,0

[.p JO,I I'" [.p ]/-1,1-1

1 iJl.p
.p(0, t) ... fi. iJzl (0, t)

, D(t):= [qI]o,o

[.p JO,I-I .. , [.p J/,/- 1

A=

(-I)I Z '"'ZI''' ~I 1

[.p]o (td ... [.pJ/I (td [.p]dt l )

LI 1 :=

(-I)I ZI "' ZI '"

[.p]o,o

21 1

[¢i ]/,0

[.p J0,1- I " , [¢i] 1- I, 1 1 [¢i ] /,/ -- I

[¢]O (t) ". [¢i]tlt)

[¢i]o (f l )·" [¢i]tltd
A(t) =

[¢iJo (I) ... [¢i]tlt)

[¢i]o,o .. , [¢iJ/,O

First of all, we claim that for some <5 > 0 (independent of the f/S and of
the z/s)

(15)

for any choice of z /s in [- <5, <5] and f/S in J. Indeed, by expanding this
determinant with respect to the first row, we obtain
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whenever Z\, ..• , ZIE [-p, p]. Meanwhile, observe that condition (l2)
implies

IDI~K (17 )

for any choice of z;'s in [- p, pJ and t/s in J. (This follows immediately
by a series of row and column transformations.) Therefore if <5 is chosen to
be any positive number less than or equal to

KCo/(l-p)

2l! (I - pi) ,

(17) combined with (16) implies (IS) provided that max; Iz;1 <<5.
Now, fix I distinct nonzero numbers z t, ... , zion ( - <5, <5) and assume that

P( t} := I/J(O, t) - .E~~ I A iI/J(Zi' t) has I distinct zeros t 1 < ... < t l on J. After
some manipulations, one arrives at rewriting P(t) as a linear combination
of the divided differences [I/J]k (t):

I

P(t):= I. IXk[(,b]k (t).
k~O

Collecting coefficients of (,b(O, t), we obtain

, IXk( - I )k
lXo + I. 1.

k=l ZI"'Zk

Since P(t) vanishes at t l , ... , tf> we also have

(18 )

(19 )

I

I IXk[(,b]k (tf) = 0,
k=O

j = I, ...,l. (20)

We remark that the determinant of the system (19)-(20) of I + I equations
is nonzero. Indeed, we may write that determinant as

(21 )

By a series of row transformations, one obtains ,1 = ,11 ni< f (tf - t;).
The inequality in (15) then shows that the determinant of the system
(19)-(20), which is given by (21), never vanishes provided the z;'s are
nonzero, as we have assumed them to be.

Now, solving the system (19}-(20) by Kramer's Rule and substituting in
(18), we obtain P(t)=(-I)l zt .. · z ,L1(t)L1- I

• By virtue of the identity
L1(t):= ,1 1(t) ni<; (t;- t;) (which can be obtained by a series of row
transformations), we may write P( t) = (- 1)' Z I ... Z 1,11 (t) ,11 1

•
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In the meantime, observe that the quotient D( 1)/D, takes the form

(22)

and we may write

where

R*( t) := ill (t) _ ( -1 )' D( t).
,11 D

So now, it remains for us to obtain estimates for the coefficients Bb and
the remainder R*(t). In view of (17) and (22), we easily obtain the
following estimates for the coefficients Bk , k = 0, ... , 1- 1

where

(23)

To see this, observe that

k = 0, ... , 1- 1. (24)

J(k)rjJ
a/ k ) (0, t)

appears in D(t), having as coefficient (k!) -I ( _1)k multiplied by an 1xl
determinant whose entries are the divided differences [rjJ] i.J (0::::::; i::::::; I, i:f. k,
0::::::; j::::::; 1- 1), each of which is majorized by Co.

To estimate the remainder R*(t), we note that (17) and (15) imply

Moreover,

IDI::::::;11 C~ and tE I.

(25 )

(26)
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Furthermore, for each j = 0, ..., I, we obtain numbers (/, (/' satisfying
I(), 1(/1 <max{lzti, ..., Iz/I} such that

I eJ¢J '*e/+1¢J v

[¢l (t) -~ ~7/ (0, t) =-t ;)~/+ I (~I' f) .
.J . v~ .J. (h

This implies that for f E I and for j = 0, ..., 1

I
I 8/¢ I[¢Jl(t)-7j" :'~j(O,f) ~(j+I)Co·maxlzkl,

J . u~ k

which brings us to the following estimate, valid for all f E [a, h]:

1L1 1(t)-D(t)/ ~(I+2)! Cb+ 1 max 12kl.
k

Finally, combining (16), (25), (26), and (27) we obtain

where

(27)

Therefore, by taking R(t):=/!R*(f), and M:=max{Mo, M 1 , ..., M/},
where M o, M I , ... , M/_ 1 have been defined in (24), we complete the proof
of Theorem 3. Q.E.D.

4. PROOF OF THEOREM I

For each p, 1 ~ p ~x;, and for each I-tuple z = (z 1, ... , ZI) with distinct
nonzero entries z/ in [ - p, p], Pp•• will have 1distinct zeros on [a, b]. See
for example [9, p. 98]. This allows us to apply Theorem 3 with 1= J =
[a, b]. So there exists <5 > °such that whenever maxk Iz kl < <5,

(28 )
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for t E [a, b] where

NOLI N. REYES

and

k =0, ..., I-I, (29)

tE [a, b], (30)

for some constant C depending only on rjJ, a, b, p, p, and I,
Thus, to prove the theorem, it will be sufficient to show that

lim Bk,p(z)=B'%,p,
z _ (0, ... ,0)

for k = 0, ,.., 1- 1.

Assuming the contrary, there exists [; > 0, such that

J= 1, 2, 3, ,.. , (31)

for some k, O~k~/-I, and for some sequence of I-tuples {ZU)}t::'1
tending to (0, ,.., 0),

(29) implies the existence of a subsequence of {zU) t-: I' which we shall
denote again by {ZU)}J:l' for which

Bk,p := lim Bk,p(zU» exists
j_ oc'

for k = 0, ... , 1- 1, By defining

_ o(l)rjJ I-I _ a(k)rjJ

Pp(t) := .'l~(/) (0, t) - L Bk,p.'l lk) (0, t),
u~ k~O uZ

we obtain from (28):

I
, Pp zlil( t) ( - 1)1 P- ( )1m .' . =-- p t ,

j_CJJ z~J I,., z)J) l!

We claim that for I ~ P ~ 00,

uniformly for tE[a,b].

tE[a,b].

(32)

(33)

(This would contradict (31), thus completing the proof of Theorem 1.)

Proof of (33) for p == 00, If Poc ::°on [a, b], then (33) immediately
follows by uniqueness of the best L oc-approximation by Chebyshev
systems. So we may assume that liP oc II L~[a, b] > 0. Being the uniform limit
of a sequence of functions each with 1+1 equioscillation points on [a, b],
Poc(t) itself must also have 1+1 equioscillation points on [a, b]. See
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[8, p. 56]. Thus, II P.x II L' [a. b] = E ~, and from this, (33) follows for p = 00,

by uniqueness of the best L 'XC-approximation by Chebyshev systems.

Proof of (33) for l:s; p < w. The characterization of the best
U-approximation [8, p. 64], implies

r ifJ(Zk> t) jPp,z(tW- 1sgn Pp,Atl dt = 0,
a

k = 1, ..., I.

(Recall that for p = 1, our assumptions imply that pp.z(t) ¥ °for almost all
t E [a, b].) For k = 0, , 1- 1, let (ifJ)k (t) denote the k th divided difference
of ifJ( z, t) for Z = Z l' , Zk + l' Since ZI' ... , z, are distinct and nonzero,
(ifJ)k (t) is a linear combination of ifJ( z l' t), ... , ifJ(Zk + I' t). Hence

fh IP (t) Ip - 1 P (t)
a (ifJ)k (t) ZIP.·~.Z, sgn ZIP.. ~.Z, dt=O, k = 0, ..., 1-1.

Now, we let Z=(ZI,''''Z,)---(O, ...,O) through the sequence {z(jl}f~o'

Applying (32) and the Lebesgue Dominated Convergence Theorem, we
obtain

k =0, ... , 1- I. (34)

This shows that IIPpIlUfa,h]=E/, for 1 :S;p<w. Uniqueness of the best
U-approximation by Chebyshev systems then implies that (33) also holds
for 1 :S; p < C1J. Q.E.D.

5. PROOF OF THEOREM 2

We shall be applying the following finite-infinite range inequalities.
Mentioned here are only very special cases of the results of Mhaskar, SalT,
and Varga from [5] and [6].

(1) For each p>O, there exist positive constants CJ, C2, depending
only on p such that for each integer 2 ~ 1, and for each polynomial Q E 7t),

(2) For any polynomial P of degree at most 2,

lie - tp(t)11 FlO, ex) I = lie -tp(t)11 pro. 2)]'
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As an immediate consequence of these two results, we have for I ~ P ~ ex; ,

ep = lim e)).)
j,-''l:

where ep is given in (2) and ep().) is defined by

epU):= inf lie '(t/- P(t))llu[O.3).)·
PE RI __ \

In what follows, p will be fixed such that I ~ p ~ 00. By defining

z(k)=!1,(k)-!1(k)
I J1(k)+l/p

(35 )

(36 )

and employing the change of variable e '= X/t(k l + lip we may rewrite (11)

equivalently as follows

where

Ep(k):=inf!le '- ±Aie '11+O.r
k

»)\\ .

.4, ,I I~ I Lf[O.'~)

(37)

(38)

Note that by taking rjJ(z, t) = e .. t(1 + 01 in Theorem 3, we easily obtain a
finite-interval version of (37). Namely, for each), > 0,

ep(A)

I! '

where ep ().) is defined in (36). Equation (35) then implies that

I
· . [ Ep(k) __ el'
1m In "",-.
k_T. Iz](k) .. ·z/(k)1 I!

To prove the inequality

I
. Ep(k) ep
1m sup ~"
k_xc Iz\(k) .. ·z/(k)1 l.

(39)

(40)

we proceed with an indirect argument. Assuming the contrary, we can find
an increasing sequence k] < k 2 < ... of positive integers, and a positive
number e such that

j= 1, 2, .... (41 )
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Now, define real numbers Ai, j' I ~ i ~ I, j = I, 2, ", such that the functions
defined by

,
Q,(/):=e '- L Ai,je 111+:,lk,ll,

i= 1

j= 1,2,3, "',

vanishes precisely at the zeros of I' - P*(t) where P*(t) E 1[/ 1 is the unique
polynomial satisfying II e I (t' - P* (t)) II UfO, 7: I = ep'

By taking ¢liz, I) = e III + :J, 1= [0, c!:,), and J to be any fixed compact
interval containing the zeros of t' - P*(t), Theorem 3 asserts that there are
polynomials P j E 1[, 1, j ~ I, such that for °~ t <XJ

Moreover, the absolute values of the coefficients of the Pj's are less than
some constant M (depending only on p), and as well, for j = 1, 2, "., and
tE [0, x), IRj(t)1 ~ Mmax{lzj(ki)l, IZ2(k/)I, "', Iz,(k/ll}. Since the right
hand side of (42) vanishes precisely at the zeros of I' - p* (t), we can find
an increasing sequence )1 </2 < "', of positive integers such that the
coefficients of P i,,( I) converge respectively to those of P*( t) as 11 -> x,
Consequently, for 1~ p ~x,

lim lie 1(t/_pi,(t))llU[Of)=!/e '(t'-P*(t))//U[O,f)=el"
11 - .... Y

Therefore, taking the L"-norm on [O,x) of both sides of (42), and
applying the triangle inequality on the right hand side of the resulting
equation, lead us to the inequality

where the lim sup is taken as) runs over the sequence /1 <)2 < .... This
contradicts (41), thus establishing the validity of (40). This completes the
proof of Theorem 2. Q.E.D.
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